AP Physics 1: Rotational Motion & Energy

ap physics 1: Rotational Motion & Energy. A high-tech physics illustration titled "ROTATIONAL MOTION & ENERGY" showing a spinning flywheel with symbols for angular displacement, velocity, and acceleration, plus the kinetic energy formula.

« Back to AP Physics Guide / Unit 7 Part 1: Torque & Equilibrium

AP Physics 1 Unit 7: Rotational Motion & Energy

Topics 7.2–7.3 (10–15% exam weight): In Part 1, we learned that Torque causes rotation. Now we analyze the motion itself. Replace linear variables with angular ones using radius (r).

1. Linear ↔ Angular Bridge

Linear Rotational Bridge (r)
x, v, a \theta, \omega, \alpha x=r\theta, v=r\omega, a=r\alpha
F=ma \tau=I\alpha W=FdWork_{rot}=\tau\theta
K=\frac{1}{2}mv^2 K_{rot}=\frac{1}{2}I\omega^2 P=FvP_{rot}=\tau\omega
⚠️ Radians Only: All rotational equations require Radians (1 rev = 2\pi rad). Degrees = wrong answer.

2. Rotational Inertia (I)

Mass (m) resists linear acceleration. Rotational Inertia (I) resists angular acceleration. I depends on mass and its distance from axis.

    \[I = \sum mr^2\]

AP Physics 1 shapes: Disk \frac{1}{2}MR^2, Hoop MR^2, Sphere \frac{2}{5}MR^2
Diagram comparing moment of inertia: solid sphere (2/5 MR²) vs hollow hoop (MR²). Hoop harder to spin.

Mass Farther = Harder to Spin: Hoop (I=MR^2) > Sphere (I=\frac{2}{5}MR^2).

3. Newton’s 2nd Law for Rotation

    \[\tau_{net} = I\alpha\]

Net torque causes angular acceleration, just like F_{net}=ma.

4. Rotational Kinetic Energy & Rolling

    \[K_{total} = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2\]

Rolling without slipping: v=r\omega. Hoop slower than sphere down ramps.
Wheel rolling without slipping: bottom v=0, top v=2v_center.

Rolling Condition: v=r\omega. Friction provides torque, no slipping.

5. Quick AP Practice

📚 AP Practice Problems

1. Sphere vs hoop (same M, R) roll down ramp. Which wins?

Answer Sphere (I=\frac{2}{5}MR^2 < Hoop MR^2). Less energy to rotation = more to translation = faster.

2. 120 rpm wheel. Angular velocity (rad/s)?

Answer 120 \frac{rev}{min} \times \frac{2\pi rad}{rev} \times \frac{1 min}{60 s} = 4\pi \approx 12.6 \, rad/s

3. Disk I=\frac{1}{2}MR^2, hoop I=MR^2. Which harder to spin?

Answer Hoop. Higher I = more torque needed for same \alpha (\tau=I\alpha).

Unit 7 Part 2 Complete!

You mastered rotational kinematics, inertia, and energy. Final piece: rotational momentum conservation.

Next: Angular Momentum →